微型混合型汽車采用傳統的12V鉛酸電池,并有交流發電機-電機單元,汽車停車時可以讓引擎停機。當踩下油門時,引擎會順滑地起動,然后正常運行。而混合型汽車有更大的電池,如豐田公司的Prius、本田公司的Insight和雪佛蘭的Volt。這些電池產生的電壓超過200V。傳統電池芯的化學類型是NiMH(鎳金屬-氫化物),但很多鋰化學技術能在某種重量下提供更高的能量(圖2)。全電動汽車(如Tesla的Roadster和尼桑的Leaf)都有最大的電池,它們電池組的電壓范圍從300V?400V。
電池電壓越高,在給定功率下的電流就會越低,從而減小了昂貴銅線電纜的直徑。更重要的是,較高的電壓可以采用較大輸出的電機繞組。2004年,豐田為Prius增加了一個升壓轉換器,將電池組電壓從200V升高至500V。這一步驟使豐田重新設計了推進電機,將扭矩從350 Nm提高到400 Nm,而功率從33 kW提高到50 kW(參考文獻1)。
數據中心亦將300V電池串用于UPS(不間斷電源)備份電源。在這種應用中,鋰離子電池正在替代鉛酸電池。汽車利用了鋰離子更好的重量能量密度,即每磅或每千克的能量。UPS應用則利用了鋰離子電池的體積能量密度。數據中心的空間都很昂貴,盡管鋰離子電池系統價格可能較高,但它占據的空間只有鉛酸電池系統的四分之一。這一事實通常能讓數據中心將電池和轉換器系統放在一間屋子里。有些數據中心正在考慮去掉轉換器,而將直流電源輸送給可以接受直流輸入的數據中心服務器。
由于鋰離子電池的尺寸小,它們在電網級應用中可獲得與數據中心相同的效益。有些電網級方案傾向采用燃料電池,而高壓燃料電池組要求與電化學電池相同的精心監護。燃料電池芯還有特殊要求,在使用期間燃料電池芯有兩種極性,會表現出多種故障模式。IC制造商正在使自己的電池組監護芯片適應于承受這些電池芯的負電壓。
圖2,電動汽車與UPS應用都可能使用多種電池類型,它們都需要用電池組測量IC作監控(Linear Technology公司提供)。
當監護超級電容組時,也會出現類似的問題。用戶希望獲得電容的全部能量,而這樣就意味著要將其放電至0V。如果出現這種情況,則介電效應將使電容出現一個負電壓,一般可達-0.5V。有些IC制造商正在改進自己的電池組芯片,使之能承受負電勢。超級電容存儲的能量少于電池或燃料電池,因此較少用于高能應用(見附文1“電池的化學特性”)。
電池芯監控
汽車與UPS制造商都希望精確地監控一個電池組中的每只電池芯。Analog Devices公司混合與電動汽車行業營銷經理Paul Maher說:“你肯定不愿因為一只壞電池芯而讓汽車停下來,但過熱情況下就得停車了。”對汽車電池的監控非常關鍵。他補充說:“一臺筆記本電腦的電池預計可使用兩年,但一個汽車電池組應可持續10年。”
測量必須很精確,因為數毫伏電壓可能代表著大量的電荷。測量有一種共模問題,它要在有數百伏共模電勢情況下,嘗試對電池芯的精確測量。這種測量不是可以使用集成ADC的直流測量。電池電壓可能以千赫的速率做改變,原因是電機變頻器電路的斬波動作。此外,測量系統還需要有隔直措施,因為電池電壓很危險。芯片必須耗電很低,這樣才不會消耗掉電池能量。除了測量本身的困難以外,還必須將測量結果送至汽車或數據中心的多個目標點。

圖3,本電路解決了共模電壓的測量問題,方法是通過一個小型隔離變壓器,傳送電池芯電壓與二極管壓降。 |