共模電感也叫共模扼流圈,常用于電腦的開關電源中過濾共模的電磁干擾信號。在板卡設計中,共模電感也是起EMI濾波的作用,用于抑制高速信號線產生的電磁波向外輻射發射。PC板卡上的芯片在工作過程中既是一個電磁干擾對象,也是一個電磁干擾源。總的來說,我們可以把這些電磁干擾分成兩類:串模干擾與共模干擾。

以主板上的兩條PCB走線為例,所謂串模干擾,指的是兩條走線之間的干擾;而共模干擾則是兩條走線和PCB地線之間的電位差引起的干擾。串模干擾電流作用于兩條信號線間,其傳導方向與波形和信號電流一致;共模干擾電流作用在信號線路和地線之間,干擾電流在兩條信號線上各流過二分之一且同向,并以地線為公共回路。
如果板卡產生的共模電流不經過衰減過濾,那么共模干擾電流就很容易通過接口數據線產生電磁輻射——在線纜中因共模電流而產生的共模輻射。美國FCC、國際無線電干擾特別委員會的CISPR22以及我國的GB9254等標準規范等都對信息技術設備通信端口的共模傳導干擾和輻射發射有相關的限制要求。為了消除信號線上輸入的干擾信號及感應的各種干擾,我們必須合理安排濾波電路來過濾共模和串模的干擾,共模電感就是濾波電路中的一個組成部分。
共模電感實質上是一個雙向濾波器:一方面要濾除信號線上共模電磁干擾,另一方面又要抑制本身不向外發出電磁干擾,避免影響同一電磁環境下其他電子設備的正常工作。
共模電感的工作原理
共模電感的濾波電路,La和Lb就是共模電感線圈。這兩個線圈繞在同一鐵芯上,匝數和相位都相同(繞制反向)。這樣,當電路中的正常電流流經共模電感時,電流在同相位繞制的電感線圈中產生反向的磁場而相互抵消,此時正常信號電流主要受線圈電阻的影響;當有共模電流流經線圈時,由于共模電流的同向性,會在線圈內產生同向的磁場而增大線圈的感抗,使線圈表現為高阻抗,產生較強的阻尼效果,以此衰減共模電流,達到濾波的目的。
事實上,將這個濾波電路一端接干擾源,另一端接被干擾設備,則La和C1,Lb和C2就構成兩組低通濾波器,可以使線路上的共模EMI信號被控制在很低的電平上。該電路既可以抑制外部的EMI信號傳入,又可以衰減線路自身工作時產生的EMI信號,能有效地降低EMI干擾強度。國內生產的一種小型共模電感,采用高頻之雜訊抑制對策,共模扼流線圈結構,訊號不衰減,體積小、使用方便,具有平衡度佳、使用方便、高品質等優點。廣泛使用在雙平衡調音裝置、多頻變壓器、阻抗變壓器、平衡及不平衡轉換變壓器等。
共模電感在源電路中的作用
電感器作為磁性元件的重要組成部分,被廣泛應用于電力電子線路中。尤其在電源電路中更是不可或缺的部分。如工業控制設備中的電磁繼電器,電力系統之電功計量表。開關電源設備輸入和輸出端的濾波器,電視接收與發射端之調諧器等等均離不開電感器。電感器在電子線路中主要的作用有:儲能、濾波、扼流、諧振等。在電源電路中,由于電路處理的均是大電流或高電壓的能量傳遞,故電感器多為“功率型”電感。
正是因為功率電感不同于小信號處理電感,在設計時因開關電源的拓撲方式不一樣,設計方式也就各有要求,造成設計的困難。當前電源電路中的電感器主要用于濾波、儲能、能量傳遞以及功率因數校正等。電感器設計涵蓋了電磁理論,磁性材料以及安規等諸多方面的知識,設計者需對工作情況和相關參數要求有清楚了解以作出最合理的設計。
共模電感的設計思路
在設計共模電感之前,首先要考察線圈須行符合以下原則:
1、正常工作狀態下,不致因通電電源電流而造成磁芯飽和。
2、對高頻干擾信號要有足夠大的阻抗,且有一定的頻寬,而對工作頻率之信號電流有最小的阻抗。
3、電感的溫度系數應小,而分布電容宜小。
4、直流電阻應盡量小。
5、感應電感應盡量大,電感值需穩定。
6、繞組間之絕緣性須滿足安規要求。
由于國家的EMI相關規范并不健全,部分廠商為了省料就鉆了這個空子,在整體防EMI性能上都大肆省料壓縮成本,其中就包括共模電感的省略,這樣做的直接后果就是主板防EMI性能極其低下;但是對于那些整體設計優秀,用料不縮水的主板,即使沒有共模電感,其整體防EMI性能仍能達到相關要求,這樣的產品仍然是合格的。因此,單純就是否有共模電感這一點來判斷主板的優劣并不恰當。 |